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Abstract

We present a new strategy for constructing tensor product spline spaces
over quadtree and octree T-meshes. The proposed technique includes
some simple rules for inferring local knot vectors to define spline blending
functions. These rules allows to obtain for a given T-mesh a set of cubic
spline functions that span a space with nice properties: it can reproduce
cubic polynomials, the functions are C2-continuous, lineally independent,
and spaces spanned by nested T-meshes are also nested. In order to span
spaces with these properties applying the proposed rules, the T-mesh
should fulfill the only requirement of being a 0-balanced quadtree or oc-
tree. The straightforward implementation of the proposed strategy and
the simplicity of tree structures can make it attractive for its use in geo-
metric design and isogeometric analysis. In this paper we give a detailed
description of our technique and illustrate some examples of its applica-
tion in isogeometric analysis performing adaptive refinement for 2D and
3D problems.

1 Introduction

The main drawback of using B-splines and NURBS for geometric design is the
impossibility to perform local refinement due to its tensor product structure.
T-splines were introduced by Sederberg et al. [1] as an alternative to NURBS.
Based on the idea of admitting meshes with T-junctions and inferring local
knot vectors by traversing T-mesh edges, T-splines have provided a promising
tool for geometric modeling that allows to perform local refinement without
introducing a large number of superfluous control points. Later, in [2] T-splines
were incorporated to the framework of isogeometric analysis. Isometric analysis
(IGA) was introduced in 2005 by Hughes et al. in [3, 4]. It has arisen as an
attempt to unify the fields of CAD and classical finite element methods. The
main idea of IGA consists in using for analysis the same functions that are used
in CAD representation of the geometry.

To use spline functions for numerical analysis and obtain a proper conver-
gence behavior, these functions must meet some requirements: linear indepen-
dence, polynomial reproduction property, local supports and possibility to per-
form local adaptive refinement. This issue was the object of numerous research
works in recent years.
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Analysis-suitable T-splines, proposed by Scott et al. in [5], is a class of
T-splines defined over T-meshes that should meet certain topological restriction
formulated in terms of T-junction extensions. Basis functions defined over an
extended analysis-suitable T-mesh are lineally independent [6] and form parti-
tion of unity. The refinement algorithm allows to accomplish highly localized
refinements and constructs nested T-spline spaces, but it presents an elevated
implementation complexity and, as far we know, it is still an open question the
generalization of the strategy to 3D cases.

Another approach to the problem of local enrichment of the approximation
space is the hierarchical refinement, originally introduced by Forsey and Bartels
in [7] and later developed in [8]. Recently, hierarchical refinement technique in
the context of isogeometric analysis was described in [9, 10, 11]. This approach
is based on a simple and natural idea to construct multilevel spaces by replacing
coarse level functions with finer basis functions. Starting from an initial uniform
mesh, hierarchical refinement scheme leads to sequential construction of nested
spline spaces with linear independent basis functions. Simplicity of its imple-
mentation and straightforward generalization to 3D make it an attractive option
for local refinement. However, a drawback of this strategy is the impossibility
to define a spline space over a given arbitrary T-mesh as well as the presence of
redundant basis functions due to the necessity to enlarge the refined area.

As another options for performing local refinement of spline spaces, C1-
continuous PHT-splines [12] or local refined splines (LR-splines) [13] can be
used.

In the present paper we propose another possible alternative for the con-
struction of spline functions that span spaces with nice properties. The main
goal we pursue here is the simplicity and low computational cost of the imple-
mentation of our strategy, both in 2D and 3D. For that we have to assume a
restriction on T-mesh type, namely, the technique we present here is designed
for 0-balanced quadtree and octree T-meshes. Tree data structure is frequently
used in engineering due to its simplicity and we consider it an attractive tool for
performing adaptive refinements. Balanced tree condition is usually imposed to
have gradual transition from the coarse mesh to the finer zones and thus to guar-
antee a good quality of the approximation space constructed over the mesh. In
addition, for our technique this condition is an obligatory prerequisite that the
T-mesh should fulfill. Assuming this reasonable restriction over the T-mesh type
allows us to define easily cubic spline functions that span spaces with desirable
properties: linear independence, C2-continuous, cubic polynomial reproduction
property, nestedness of spanned spaces and straightforward implementation.
The key of the strategy lies in some simple rules used for inferring the local
knot vectors for each blending function.

The paper is organized as follows. General scheme of our strategy and
the description of its main stages are given in the section 2. In the section
3 we explain in details the key of our technique, that is the rules used for the
modification of the function supports in order to span spaces with desirable
properties. Computational examples of performing adaptive refinement for 2D
and 3D Poisson problems are presented in the Section 4. Conclusions are given
in Section 5.
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2 Strategy for construction of polynomial spline
spaces over quadtree and octree T-meshes

In this section we describe our strategy to define bivariate (trivariate) spline
functions over quadtree (octree) T-meshes. The strategy we propose has some
similarity with T-splines insomuch as we define the blending functions from local
knot vectors that are inferred by traversing the T-mesh edges. Some additional
rules and requirements are imposed for the local knot vectors in order to obtain
spline spaces with nice properties. The process of spline space construction for
a given T-mesh can be divided in the following three steps:

1. Mesh pretreatment (0-balancing)

2. Inferring local knot vectors

3. Modification of local knot vectors

Next, we give a description of each step of the process.

2.1 Mesh pretreatment. 0-balanced quadtree and octree
meshes.

Due to its simplicity, quadtree and octree are attractive tools for performing
adaptive refinement in IGA and geometric modeling. To guarantee a good
quality of the approximation space constructed over a mesh, it is preferable
to have a gradual transition from the coarse mesh to the finely refined zone.
That is why it is common to work with balanced quadtree and octree meshes.
The strategy we propose in this paper is designed exclusively for the 0-balanced
T-meshes. A mesh with tree structure is said to be 0-balanced if for any k, no
cell at level k shares a vertex (0-face) with a cell at level greater than k + 1.
To obtain a 0-balanced quadtree, a standard balancing procedure is applied.
Note that the refinements performed during the 0-balancing procedure do not
propagate, see [14].

It should be highlighted that 0-balancing the T-mesh is an essential prerequi-
site for the construction of spline spaces by means of our technique. In general,
if the T-mesh is not 0-balanced, our rules for inferring local knot vectors do not
lead to polynomial spaces.

Imposing this mild restriction for T-meshes allows us to define easily spline
spaces with the desirable properties.

2.2 Inferring local knot vectors

Let us consider a T-mesh T of the squared parametric domain Ω := [0, 1]d. We
call regular node the node of the mesh that is not a T-junction. We associate
a blending function only to regular nodes of the mesh, as it is usual in classical
finite element methods when working with hanging nodes. The skeleton of a
d-dimensional mesh T is the geometric set of points composed of the union of
all (d−1)-faces of the mesh and it is denoted by skt(T ). That is, for a 2D space,
the mesh skeleton is the union of all edges of the mesh and the skeleton of a 3D
mesh is the union of all its faces.
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(a) (b) (c)

Figure 1: Inferring local knot vectors for a bivariate function by traversing the
T-mesh edges. (a) No T-junction is skipped; (b) two T-junctions are skipped
in each direction; (c) two T-junctions are skipped and the knots are repeated
when the boundary is reached.

To define our cubic tensor product spline blending functions over a given
d-dimensional T-mesh, a local knot vector for d parametric directions should

be assigned to each function Nα: Ξjα =
(
ξj1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5

)
, j = 1, ..., d. Simi-

larly to [1], these knot vectors are inferred by traversing the T-mesh skeleton.
For simplicity, let us describe this procedure for the two-dimensional T-mesh.
Starting from the central knot (ξ1

3 , ξ
2
3), i.e. the anchor of the function, we walk

across the T-mesh until intersect perpendicularly with a mesh edge. According
to our strategy, we should skip over the T-junctions where the missing edge is
perpendicular to the direction of our marching, see Fig. 1. When the boundary
of the parametric domain is reached while walking across the mesh, we repeat
knots creating an open knot vector structure along the boundary, see Fig. 1(c).
Note that all interior knots have multiplicity 1. Thus, we obtain for the mesh
T a set of blending functions {Nα}α∈AT

, where AT is the index set. Any inte-
rior regular node of the mesh has exactly one function associated to it and the
boundary nodes have more than one function associated due to the open knot
vector structure.

The process of inferring of local knot vectors can be resumed as follows:

• Blending functions are associated only to regular nodes of the mesh.

• Local knot vectors are inferred by walking across the mesh until intersect
the mesh skeleton. This intersection should not coincide with a T-junction
perpendicular to the direction of our marching.

• Boundary knots are repeat to create an open knot vector structure along
the boundary.

Next, in order to span a spline space with good properties, some function
supports should be modified. This issue is addressed in the next subsection.

2.3 Modification of local knot vectors

The key of our strategy lies in some simple rules used for the modification of the
function supports that leads to the construction of a polynomial spline space
over a given 0-balanced T-mesh. In order to describe the idea, let us introduce
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some notation. For the local knot vectors Ξjα =
(
ξj1, ξ

j
2, ξ

j
3, ξ

j
4, ξ

j
5

)
, j = 1, ..., d

let us denote the length of each knot interval as ∆j
i = ξji+1− ξ

j
i , j = 1, ..., d and

i = 1, ..., 4.
The support of a d-variate blending function Nα is a d-dimensional rect-

angular box : [ξ1
1 , ξ

1
5 ] × · · · × [ξd1 , ξ

d
5 ]. We are going to call frame of a function

support to the union of all (d − 2)-faces of this box and we will denote it by
frm(suppNα). That is, for the rectangular support of a bivariate function, the
frame is the union of the four vertices of this rectangle. For the cuboidal su-
pport of a trivariate function, its frame is composed of the union of the twelve
edges of this cuboid.

The goal of the knot vector modification is to achieve that knot vectors
Ξjα, j = 1, ..., d of each blending function Nα fulfill the following conditions:

Condition 1: Local knot vectors of the d-variate function Nα verify1

∆j
1 > ∆j

2 = ∆j
3 6 ∆j

4, j = 1, ..., d, (1)

Condition 2: The frame of the function support should be situated over the
mesh skeleton:

frm(suppNα) ∈ skt(T ). (2)

Thus, the function supports that do not meet the Conditions 1 or 2 should
be modified. This modification consists in to extend the original knot vector
by skipping over some knot intervals and changing some knots value until the
resulting support satisfies both conditions.

In the next section we give a detailed description of this procedure for 2D
and 3D cases.

3 Support modification

Here, we present our strategy based on some simple support extension rules to
obtain local knot vectors that fulfill the Condition 1 and 2 formulated in the
previous section. We proceed as follows. First, if after traversing the T-mesh
skeleton the local knot vectors of a function do not satisfy Condition 1, we mod-
ify some of their knots in order to meet the Condition 1. Then, the fulfillment of
the Condition 2 is checked and, if it is not satisfied, another appropriate modi-
fication of the support is carried out. As result of these modifications we obtain
a new extended support of a function with local knot vectors which verify both
conditions. These modifications are easily implemented taking into account the
balanced tree structure of the mesh. Let see in details this procedure.

To simplify the notation, in the rest of the paper we denote the parametric
coordinates as (ξ, η, ζ) and it is related to the previous notation as (ξ1, ξ2, ξ3) =
(ξ, η, ζ). Consequently, (Ξ1,Ξ2,Ξ3) = (Ξ,H,Z) and (∆1

i ,∆
2
i ,∆

3
i )

= (∆ξ
i ,∆

η
i ,∆

ζ
i ).

3.1 Support modification for 2D meshes

In order to facilitate the description and illustration of the strategy, some con-
cepts and notation introduced in section 2 have to be particularized to the 2D

1Except the cases involving repeated knots that are explained at the end of the section 3.1.
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(a) Condition 1 is not satisfied because ∆ξ
4 < ∆ξ

3 and ∆η
3 < ∆η

2 .

(b) Condition 2 is not satisfied because V5,5 /∈ skt(T ).

Figure 2: Support modification according to the Condition 1 and 2. (a) An
example of modification of the local knot vectors of a bivariate function to
satisfy the Condition 1; (b) an example of modification of the local knot vectors
to satisfy the Condition 2.

case. The skeleton skt(T ) of a two-dimensional mesh T is the union of all edges
of the mesh. For a bivariate function let us denote the vertices of its rectangular
support as V1,1 = (ξ1, η1), V5,1 = (ξ5, η1), V5,5 = (ξ5, η5) and V1,5 = (ξ1, η5).
Then, the frame of a function support is the union of its four vertices, i.e.,
frm(suppNα) = {Vn,m, n,m ∈ {1, 5}}.

Condition 1 for the local knot vectors Ξ and H of a bivariate function is
trivial and does not need any clarification. The Condition 2 adapted to 2D
case is formulated as follows: The four vertices of a function support should be
situated over the mesh edges.

If, for example, the local knot vector Ξ of a function does not satisfy the
Condition 1, we modify this vector by skipping over the minimal number of knots
until ∆ξ

1 > ∆ξ
2 = ∆ξ

3 6 ∆ξ
4 is verified, and analogously, for H. This modification

is made independently for each parametric direction applying certain simple
extension rules. Let see an example of support extension for a bivariate function.
Leftmost function support shown in Fig. 2(a) does not meet the Condition 1.

For the knot vector Ξ we have ∆ξ
3 > ∆ξ

4, so the knot interval ∆ξ
4 should be

modified. Let us denote h = max(∆ξ
2,∆

ξ
3) = max(∆η

2 ,∆
η
3). Note that both

maxima coincide due to the quadtree structure and the fact that the T-junctions
are skipped. Then, the fifth knot ξ5 is redefined as ξ∗5 ← ξ3 + 2h. For the local
knot vector H we have ∆η

2 > ∆η
3 , so the knots η4 and η5 should be modified as

η∗4 ← η3 + h, η∗5 ← η3 + 2h.
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Once the Condition 1 is satisfied, in order to fulfill the Condition 2, we
check weather the vertices of the function support are situated over the mesh
edges. If not, we modify the knot vectors by skipping over a knot for both
parametric directions and placing this vertex over the mesh edges. Figure 2(b)
illustrates this procedure. The checking is performed independently for each
of the four quadrants of the function support. Note that, for our 0-balanced
quadtree, we should make this checking only for some functions. For example,
without loss of generality, the support vertex V5,5 = (ξ5, η5) must be checked

only if ∆ξ
3 = ∆ξ

4 = ∆η
3 = ∆η

4 . An example of a function support violating
the Condition 2 is illustrated in Fig. 2(b). The vertex V5,5 = (ξ5, η5) of this
support is not situated over a mesh edge, so the fifth knots for both parametric
directions should be redefined as ξ∗5 ← ξ3 + 3h, η∗5 ← η3 + 3h, and thus, the
new vertex V5,5 is placed over the mesh edges.

The extension of any other function support is completely analogous to these
two examples. In all possible cases, the extension of a function support implies
to change one or two knot intervals by duplicating its size.

A detailed algorithm for the extension rules used to modify a bivariate func-
tion support according to the Condition 1 and 2 are given in Algorithms 1 and
2.

Figure 3 shows some examples of support modifications. Functions that
satisfy both conditions and should not be modified are given in Fig. 3(a).
Examples of support modifications according to the Condition 1 are shown in
Fig. 3(b), (c), (d) and (e). And Fig. 3(f), (g) and (h) illustrate support
modifications according to the Condition 2 or both.

Note that an exception for the Condition 1 is a knot vector that contains knot
interval of length 0 due to the open knot vector structure along the boundary. In
this case, a knot vector should fulfill the inequality (1) not taking into account
the knot intervals of length 0. Consequently, an exception for the application
of the extension rules is the case when the boundary of the parametric domain
is reached traversing the T-mesh edges, see Fig. 3(c), (d) and (e).

3.2 Support modification for 3D meshes

In this section we give a description and illustration of the proposed strategy
for defining trivariate spline functions over 0-balanced octree T-meshes.

The skeleton skt(T ) of a three-dimensional mesh T is the union of all faces
of the mesh. For a trivariate function let us denote the vertices of its support as
Vn,m,k = (ξn, ηm, ζk) where n,m, k ∈ {1, 5}. And the edge of a support formed
by the two vertices Vn,m,k and Vp,q,r is denoted as E(n,m,k),(p,q,r). Then, the
frame frm(suppNα) of a trivariate function support is the union of its twelve
edges.

The formulation of the Condition 1 for the local knot vectors of a trivariate
function is analogues to 2D case. The Condition 2 adapted to 3D meshes is
stated as follows: Edges of the cuboidal function support should be situated over
the mesh faces.

The implementation of the strategy for 3D is similar to 2D case. To satisfy
the Condition 1, extension rules are applied to each of three local knot vectors
of a function analogously to 2D case using the Algorithms 1. In order to fulfill
the Condition 2, we check weather the edges of a function support are situated
over the mesh faces. If not, the two knot vectors perpendicular to this edge
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(a) Initial supports that satisfy both con-
ditions and should not be modified.

(b) Condition 1 is not satisfied because

∆ξ
1 < ∆ξ

2, so ξ∗1 ← ξ3 − 2h.

(c) Condition 1 is not satisfied because

∆ξ
2 < ∆ξ

3, so ξ∗1 ← ξ3 − 2h and
ξ∗2 ← ξ3 − h.

(d) Condition 1 is not satisfied because
∆η

1 < ∆η
2 , so η∗1 ← η3 − 2h.

(e) Condition 1 is not satisfied because

∆ξ
2 < ∆ξ

3 and ∆η
2 < ∆η

3 , so ξ∗2 ← ξ3 − h,
η∗2 ← η3 − h and η∗1 ← η3 − 2h.

(f) Condition 2 is not satisfied because
V5,5 /∈ skt(T ), so ξ∗5 ← ξ3 + 3h and
η∗5 ← η3 + 3h.

(g) Condition 2 is not satisfied because
V1,1 and V1,5 /∈ skt(T ), so ξ∗1 ← ξ3 − 3h,
η∗1 ← η3 − 3h and η∗5 ← η3 + 3h.

(h) Condition 1 and 2 are not satis-

fied because ∆ξ
2 > ∆ξ

3, ∆η
2 > ∆η

3
and V1,1 /∈ skt(T ), so ξ∗4 ← ξ3 + h,
ξ∗5 ← ξ3 + 2h, η∗4 ← η3 +h, η∗5 ← η3 + 2h,
ξ∗1 ← ξ3 − 3h, η∗1 ← η3 − 3h.

Figure 3: Examples of function support modifications to fulfill the imposed
Conditions 1 and 2. Initial support is marked in blue and corrected support in
red.
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Algorithm 1: Knot vector modifications to fulfill the Condition 1.

Input: A knot vector Ξ = (ξ1, ξ2, ξ3, ξ4, ξ5), ξi ∈ [0, 1].
1 Function Modify1 (Ξ)
2 Ξ∗ ← Ξ
3 h = max(∆2,∆3)
4 if ∆2 < ∆3 and ξ2 > 0 then
5 ξ∗2 ← ξ3 − h
6 ξ∗1 ← ξ∗2
7 if ξ∗1 > 0 then ξ∗1 ← ξ3 − 2h

8 if ∆1 < ∆2 and ξ1 > 0 then
9 ξ∗1 ← ξ3 − 2h

10 if ∆2 > ∆3 and ξ4 < 1 then
11 ξ∗4 ← ξ3 + h
12 ξ∗5 ← ξ∗4
13 if ξ∗5 < 1 then ξ∗5 ← ξ3 + 2h

14 if ∆4 < ∆3 and ξ5 < 1 then
15 ξ∗5 ← ξ3 + 2h

16 return Ξ∗

Output: A corrected knot vector Ξ∗ that satisfies the Condition 1.

Algorithm 2: Support modification to fulfill the Condition 2 in 2D.

Input: A 0-balanced mesh T and a pair of local knot vectors S = {Ξ,H}.
1 Function Modify2 (T, S)
2 S∗ ← S

3 h = max(∆ξ
2,∆

ξ
3)

4 for n ∈ {1, 5} do
5 for m ∈ {1, 5} do
6 if (ξn, ηm) /∈ skt(T ) then
7 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
8 η∗m ← η3 + 3h sgn(ηm − η3)

9 return S∗

Output: A modified support S∗ = {Ξ∗,H∗} that satisfies the Condition 2.
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(a)

(b)

Figure 4: Support modification of a trivariate function according to the Condi-
tion 2. (a) Only one edge (in blue) violating the Condition 2. The node V5,1,1

is sited in the center of the face of size 2h. The support is extended in two
directions; (b) three edges violating Condition 2. The node V5,1,1 is sited in the
center of the cell of size 2h. The support is extended in three directions.
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should be modified by skipping over a knot for both parametric direction and
placing this edge over the mesh faces. This checking is performed independently
for each of the eight quadrants of the function support and, in each quadrant,
three edges should be checked.

Figure 4 illustrates the support extension procedure for the quadrant of the
vertex V5,1,1. Due to the octree structure only two cases can take place: (i) the
quadrant contains one edge that is not situated over the mesh faces or (ii) the
quadrant contains three edges and a vertex that are not situated over the mesh
skeleton. We now study each case.

(i) If a quadrant contains one edge that does not fulfill the Condition 2, then
two knot vectors perpendicular to this edge are modified, see Fig. 4(a). For the
function support shown in Fig. 4(a) left, the edge E(5,1,1),(5,1,5) is not situated
over the mesh faces. Therefore its two knot vectors Ξ and H perpendicular to
this edge are modified in order to place the edge over the mesh faces, namely,
the knots ξ5 and η1 are redefined as ξ∗5 ← ξ3 + 3h and η∗1 ← η3 − 3h, where

h = max(∆ξ
2,∆

ξ
3) = max(∆η

2 ,∆
η
3) = max(∆ζ

2,∆
ζ
3).

(ii) If a quadrant includes three edges that are not situated over the mesh
faces, then the three knot vectors are modified by skipping over a knot for
each of the three parametric directions, see Fig. 4(b). The vertex V5,1,1 and
the three edges connected to it are not situated over the mesh skeleton, so all
three knot vectors are modified to place the three edges over the mesh faces:
ξ∗5 ← ξ3 + 3h, η∗1 ← η3 − 3h, ζ∗1 ← ζ3 − 3h.

Algorithm 3 explains the extension rule used to modify a trivariate function
support according to the Condition 2.

Algorithm 3: Support correction to fulfill the Condition 2 in 3D.

Input: A 0-balanced T-mesh T and three local knot vectors S = {Ξ,H,Z}.
1 Function Modify2 (T, S)
2 S∗ ← S

3 h = max(∆ξ
2,∆

ξ
3)

4 mov(i) := i+ 4 sgn(3− i)
5 for n ∈ {1, 5} do
6 for m ∈ {1, 5} do
7 for k ∈ {1, 5} do
8 if E(n,m,k),(mov(n),m,k) /∈ skt(T ) then
9 η∗m ← η3 + 3h sgn(ηm − η3)

10 ζ∗k ← ζ3 + 3h sgn(ζk − ζ3)

11 if E(n,m,k),(n,mov(m),k) /∈ skt(T ) then
12 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
13 ζ∗k ← ζ3 + 3h sgn(ζk − ζ3)

14 if E(n,m,k),(n,m,mov(k)) /∈ skt(T ) then
15 ξ∗n ← ξ3 + 3h sgn(ξn − ξ3)
16 η∗m ← η3 + 3h sgn(ηm − η3)

17 return S∗

Output: A modified support S∗ = {Ξ∗,H∗,Z∗} that satisfies the Condition 2.
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3.3 Properties

Here, we summarize the properties of the spaces constructed by means of our
method.

For any 0-balanced mesh T a set of blending functions defined according
to our strategy spans a space ST := span {Nα : α ∈ AT } with the following
properties:

• Functions {Nα}α∈AT
are C2-continuous.

• Functions {Nα}α∈AT
are lineally independent.

• Polynomial reproduction property: P3(Ω) ∈ ST .

• Spaces spanned by nested T-meshes are also nested:
T1 ⊂ T2 ⇒ ST1

⊂ ST2
.

Unfortunately, for now, we can not provide a rigorous theoretical framework
for our strategy. We plan to do this in our future work. We have carried out
numerical experiments for an enormous number of different scenarios of mesh
refinements and we have verified for all of them the nestedness of the spaces and
the linear independence.

4 Computational examples

In this section we present computational examples of the application of our
technique in problems involving adaptive refinement. The proposed method is
tested by resolution of 2D and 3D Poisson problems using IGA.

4.1 Poisson problem on a complex domain

Here, we present the result of the resolution of a Poisson problem on a complex
domain using isogeometric analysis. Let us consider the problem

−4u = f in Ω,

u = g on ∂Ω.
(3)

The problem is set up in such a way that the analytical solution is a function
with steep wave front given by

u(r) = arctan(α(r − r0)),

where r =
√

(x− xc)2 + (y − yc)2, the parameter α determines the steepness of
the wave front and r0 is its location. In this example α = 200 and r0 = 0.6. The
center of the wave front (xc, yc) = (0, 0) is situated outside our computational
domain, so the function is smooth in Ω.

The parameterization of the computational domain is performed using the
algorithm described in our previous work [15]. This technique, based on a
T-mesh untangling and optimization procedure, allows us to obtain a good
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(a) (b)

Figure 5: Parameterization of the computational domain for the problem of
the section 4.1. (a) Colormap of the mean ratio Jacobian represented in the
parametric domain; (b) colormap of the mean ratio Jacobian represented in the
physical domain.

quality parameterization suitable for application of IGA. The procedure is an
extension of the ideas presented in our works [16, 17, 18].

The mean ratio Jacobian is used to evaluate the quality of the parameteriza-
tion in the sense of its orthogonality and uniformity. Figures 5(a) and (b) show
the colormap of the parameterization quality for our parametric and physical
domains. It should be mentioned that for all numerical examples the parame-
terization of the computational domain is performed using the same blending
functions that are used for the solution approximation, so isoparametric con-
cepts holds during isogeometric analysis.

We perform an adaptive refinement based on a posteriori error indicator
to improve the quality of the numerical solution. We have chosen a simple
residual-type error estimator given by

η(Ωe)
2 = ‖h (f + ∆uh) ‖20,Ωe

=

∫
Ωe

h2 (f + ∆uh)
2

dΩ,

where h is the diameter of the cell Ωe. The estimator is jump free because of
the smoothness of the isogeometric approximation. A cell Ωe is marked to be
refined if η(Ωe) > γ maxi {η(Ωi)}, being γ ∈ [0, 1].

The numerical solution of the problem and the mesh corresponding to the
final refinement iteration is shown in Fig. 6. As expected, the error estimator
have marked to refine in the zone of the wave front. The evolution of the exact
error in L2-norm and H1-seminorm are shown in Fig. 7.

4.2 Poisson problem on 3D domain

The next computational example is the resolution of a 3D Poisson problem
using IGA. The computational domain is a spline approximation of a sphere
portion, see Fig. 8. The initial uniform mesh was composed by 4 × 4 × 4
cells. The approximation is constructed using our spline blending function.
The Poisson problem with Dirichlet boundary condition is set up so that the
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(a) (b)

(c) (d)

Figure 6: Results of the adaptive refinement for the Poisson problem of the
section 4.1. (a) Final refinement in the parametric domain; (b) final refinement
in the physical domain; (c) numerical solution in the parametric domain; (d)
numerical solution in the physical domain.
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Figure 7: Convergence of L2-norm and H1-seminorm error for the Poisson prob-
lem of the section 4.1, for γ = 0.1.
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(a) (b)

(c) (d)

Figure 8: Mesh and numerical solution in the sixth adaptive refinement step for
the 3D Poisson problem of the section 4.2. (a) Parametric mesh; (b) physical
mesh; (c) numerical solution in the parametric domain; (d) numerical solution
in the physical domain.

analytical solution of the problem is

u(r) = sin

(
1

α+ r

)
,

where r =
√
x2 + y2 and parameter α = 1/10π. This is a smooth function with

an oscillation near the origin. Results of the final refinement iteration are shown
in Fig. 8. The convergence behavior of the adaptive refinement is illustrated in
Fig. 9.

5 Conclusions and future research

In this paper we have proposed a strategy for defining tensor product spline
spaces over quadtree and octree T-meshes. We only demand these T-meshes
to be 0-balanced and this requirement can be easily satisfied by using a stan-
dard balancing procedure. The proposed strategy includes simple instructions
used for inferring local knot vectors to define blending functions. The resulting
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Figure 9: Convergence of L2-norm and H1-seminorm error for the Poisson prob-
lem of the section 4.2, for γ = 0.1.

spline spaces have good properties: lineal independence, C2-continuity, ability
for reproducing cubic polynomials and the characteristic that spaces spanned by
nested T-meshes are also nested. The above mentioned properties were verified
in numerical experiments, but we can not provide for now a complete theoretical
framework for our method. We plan to do that in our future works.

The implementation of our technique is straightforward taking into account
the balanced tree structure of the mesh. Examples of adaptive refinement using
IGA for 2D and 3D Poisson problems have been presented. In all of them,
optimal rates of convergence have been obtained. We believe that the simplicity
of our technique can make it an attractive tool for its application in IGA and
geometric design.
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